安装 #
安装必需的库。你需要go
,libpcap
和gopacket
包。因为gopacket是在libpcap之上构建的,所以我强烈建议您了解该libpcap库是如何工作的。你可以学习如何在C语言中使用libpcap来加深理解。这些示例应该在使用libpcap的Linux/Mac和使用winpcap的Windows上工作。如果出现错误(如cc1.exe: sorry, unimplemented: 64-bit mode not compiled in
),可能需要设置GOARCH=386
。
获取gopacket包
# Get the gopacket package from GitHub
go get github.com/google/gopacket
windows系统需要安装winpcap
#下载window installer exe文件安装
https://www.winpcap.org/install/
linux系统需要安装libcap
sudo apt-get install libpcap-dev
你可能还想签出gopacket project, 查看它的godoc文档。
查看pcap版本
package main
import (
"fmt"
"github.com/google/gopacket/pcap"
)
func main() {
fmt.Println(pcap.Version())
}
D:\study\src\sqlpacket>go run version.go
WinPcap version 4.1.3 (packet.dll version 4.1.0.2980), based on libpcap version 1.0 branch 1_0_rel0b (20091008)
网络接口
类型:pcap.Interface
type Interface struct {
Name string
Description string
Flags uint32
Addresses []InterfaceAddress
}
type InterfaceAddress struct {
IP net.IP
Netmask net.IPMask // Netmask may be nil if we were unable to retrieve it.
Broadaddr net.IP // Broadcast address for this IP may be nil
P2P net.IP // P2P destination address for this IP may be nil
}
查看设备 #
package main
import (
"fmt"
"log"
"github.com/google/gopacket/pcap"
)
func main() {
// 得到所有的(网络)设备
devices, err := pcap.FindAllDevs()
if err != nil {
log.Fatal(err)
}
// 打印设备信息
fmt.Println("Devices found:")
for _, device := range devices {
fmt.Println("\nName: ", device.Name)
fmt.Println("Description: ", device.Description)
fmt.Println("Devices addresses: ", device.Description)
for _, address := range device.Addresses {
fmt.Println("- IP address: ", address.IP)
fmt.Println("- Subnet mask: ", address.Netmask)
}
}
}
打开一个设备进行实时捕获 #
package main
import (
"fmt"
"github.com/google/gopacket"
"github.com/google/gopacket/pcap"
"log"
"time"
)
var (
snapshot_len int32 = 65535
promiscuous bool = false
err error
timeout time.Duration = 30 * time.Second
handle *pcap.Handle
)
func main() {
//取得所有设备
devices, _ := pcap.FindAllDevs()
handle, err = pcap.OpenLive(devices[0].Name, snapshot_len, promiscuous, timeout)
if err != nil {
log.Fatal(err)
}
defer handle.Close()
// 通过监听设备的实时流量或者来自文件的数据包,得到了一个handle,
//通过这个handle得到一个数据包源packetSource
packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
for packet := range packetSource.Packets() {
// Process packet here
fmt.Println(packet)
}
}
pcap.OpenLive参数:
- 设备名:pcap.FindAllDevs()返回的设备的Name
- snaplen:捕获一个数据包的多少个字节,一般来说对任何情况65535是一个好的实践,如果不关注全部内容,只关注数据包头,可以设置成1024
- promisc:设置网卡是否工作在混杂模式,即是否接收目的地址不为本机的包
- timeout:设置抓到包返回的超时。如果设置成30s,那么每30s才会刷新一次数据包;设置成负数,会立刻刷新数据包,即不做等待
- 要记得释放掉handle
写入到pcap文件 #
为了写入到pcap格式的文件中,我们需要gopacket/pcapgo
,它包含一个Writer
,还有两个有用的辅助函数:WriteFileHeader()
和 WritePacket()
package main
import (
"fmt"
"github.com/google/gopacket"
"github.com/google/gopacket/layers"
"github.com/google/gopacket/pcap"
"github.com/google/gopacket/pcapgo"
"log"
"os"
"time"
)
var (
deviceName string = "eth0"
snapshotLen int32 = 1024
promiscuous bool = false
err error
timeout time.Duration = -1 * time.Second
handle *pcap.Handle
packetCount int = 0
devices []pcap.Interface
)
func main() {
// Open output pcap file and write header
f, _ := os.Create("record.pcap")
w := pcapgo.NewWriter(f)
_ = w.WriteFileHeader(uint32(snapshotLen), layers.LinkTypeEthernet)
defer f.Close()
// 打开一个设备,进行捕获
devices, err = pcap.FindAllDevs()
if err != nil {
log.Fatal(err)
}
handle, err = pcap.OpenLive(devices[0].Name, snapshotLen, promiscuous, timeout)
if err != nil {
log.Fatal(err)
}
defer handle.Close()
// Start processing packets
packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
for packet := range packetSource.Packets() {
// Process packet here
fmt.Println(packet)
_ = w.WritePacket(packet.Metadata().CaptureInfo, packet.Data())
packetCount++
// Only capture 100 and then stop
if packetCount > 100 {
break
}
}
}
打开pcap文件 #
除了打开一个设备实时捕获以外,我们还可以读取pcap文件进行离线分析。你可以通过tcpdump捕获一个文件来测试
windows可以使用winDump工具
winDump -w test.pcap
linux使用tcpdump命令捕获
tcpdump -w test.pcap
离线读取pcap文件
package main
// Use tcpdump to create a test file
// tcpdump -w test.pcap
// or use the example above for writing pcap files
import (
"fmt"
"github.com/google/gopacket"
"github.com/google/gopacket/pcap"
"log"
)
var (
pcapFile string = "test.pcap"
handle *pcap.Handle
err error
)
func main() {
// Open file instead of device
handle, err = pcap.OpenOffline(pcapFile)
if err != nil {
log.Fatal(err)
}
defer handle.Close()
// Loop through packets in file
packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
for packet := range packetSource.Packets() {
fmt.Println(packet)
}
}
设置过滤器 #
下面的代码仅仅返回端口80上的packet:
过滤抓端口为80的代码
package main
import (
"fmt"
"github.com/google/gopacket"
"github.com/google/gopacket/pcap"
"log"
"time"
)
var (
snapshot_len int32 = 1024
promiscuous bool = false
err error
timeout time.Duration = 30 * time.Second
handle *pcap.Handle
)
func main() {
devices , _ := pcap.FindAllDevs()
handle, err = pcap.OpenLive(devices[0].Name, snapshot_len, promiscuous, timeout)
if err != nil {
log.Fatal(err)
}
defer handle.Close()
// Set filter
var filter string = "tcp and port 80"
err = handle.SetBPFFilter(filter)
if err != nil {
log.Fatal(err)
}
fmt.Println("Only capturing TCP port 80 packets.")
packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
for packet := range packetSource.Packets() {
// Do something with a packet here.
fmt.Println(packet)
}
}
过滤端口为3306
package main
import (
"fmt"
"github.com/google/gopacket"
"github.com/google/gopacket/layers"
"github.com/google/gopacket/pcap"
"log"
"time"
)
var (
snapshot_len int32 = 65535
promiscuous bool = false
err error
timeout time.Duration = 30 * time.Second
handle *pcap.Handle
port uint16 = 3306
devices []pcap.Interface
)
func main() {
// Set filter
filter := getFilter(port)
fmt.Println("filter:", filter)
devices, err = pcap.FindAllDevs()
handle, err = pcap.OpenLive(devices[0].Name, snapshot_len, promiscuous, timeout)
if err != nil {
log.Fatal(err)
}
defer handle.Close()
err = handle.SetBPFFilter(filter)
if err != nil {
log.Fatal(err)
}
fmt.Println("Only capturing TCP port 3306 packets.")
packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
for packet := range packetSource.Packets() {
if packet.NetworkLayer() == nil || packet.TransportLayer() == nil || packet.TransportLayer().LayerType() != layers.LayerTypeTCP {
fmt.Println("unexpected packet")
continue
}
fmt.Printf("packet:%v\n",packet)
// tcp 层
tcp := packet.TransportLayer().(*layers.TCP)
fmt.Printf("tcp:%v\n", tcp)
// tcp payload,也即是tcp传输的数据
fmt.Printf("tcp payload:%v\n", tcp.Payload)
}
}
func getFilter(port uint16) string {
filter := fmt.Sprintf("tcp and ((src port %v) or (dst port %v))", port, port)
return filter
}
解码packet的各层 #
我们可以获取原始数据包,并尝试将其强制转换为已知格式。它与不同的层兼容,因此我们可以轻松访问ethernet、IP和TCP层。layers
包是gopacket的Go库中的新功能,在底层libpcap库中不存在。它是gopacket库的非常有用的一部分。它允许我们轻松地识别数据包是否包含特定类型的层。这个代码示例将演示如何使用layers包来查看包是否是ethernet、IP和TCP,以及如何轻松访问这些头中的元素。
找到payload
(有效载荷)取决于涉及的所有层。每个协议都是不同的,必须相应地进行处理。这就是layers包的强大之处。gopacket的作者花了很多时间为许多已知层(ethernet、IP、UDP和TCP)创建layer类型。其中payload
(有效负载)是应用程序层的一部分。
package main
import (
"fmt"
"github.com/google/gopacket"
"github.com/google/gopacket/layers"
"github.com/google/gopacket/pcap"
"log"
"strings"
"time"
)
var (
snapshotLen int32 = 1024
promiscuous bool = false
err error
timeout time.Duration = 30 * time.Second
handle *pcap.Handle
)
func main() {
// Open device
devices, _ := pcap.FindAllDevs()
handle, err = pcap.OpenLive(devices[0].Name, snapshotLen, promiscuous, timeout)
if err != nil {log.Fatal(err) }
defer handle.Close()
packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
for packet := range packetSource.Packets() {
printPacketInfo(packet)
}
}
func printPacketInfo(packet gopacket.Packet) {
// Let's see if the packet is an ethernet packet
ethernetLayer := packet.Layer(layers.LayerTypeEthernet)
if ethernetLayer != nil {
fmt.Println("Ethernet layer detected.")
ethernetPacket, _ := ethernetLayer.(*layers.Ethernet)
fmt.Println("Source MAC: ", ethernetPacket.SrcMAC)
fmt.Println("Destination MAC: ", ethernetPacket.DstMAC)
// Ethernet type is typically IPv4 but could be ARP or other
fmt.Println("Ethernet type: ", ethernetPacket.EthernetType)
fmt.Println()
}
// Let's see if the packet is IP (even though the ether type told us)
ipLayer := packet.Layer(layers.LayerTypeIPv4)
if ipLayer != nil {
fmt.Println("IPv4 layer detected.")
ip, _ := ipLayer.(*layers.IPv4)
// IP layer variables:
// Version (Either 4 or 6)
// IHL (IP Header Length in 32-bit words)
// TOS, Length, Id, Flags, FragOffset, TTL, Protocol (TCP?),
// Checksum, SrcIP, DstIP
fmt.Printf("From %s to %s\n", ip.SrcIP, ip.DstIP)
fmt.Println("Protocol: ", ip.Protocol)
fmt.Println()
}
// Let's see if the packet is TCP
tcpLayer := packet.Layer(layers.LayerTypeTCP)
if tcpLayer != nil {
fmt.Println("TCP layer detected.")
tcp, _ := tcpLayer.(*layers.TCP)
// TCP layer variables:
// SrcPort, DstPort, Seq, Ack, DataOffset, Window, Checksum, Urgent
// Bool flags: FIN, SYN, RST, PSH, ACK, URG, ECE, CWR, NS
fmt.Printf("From port %d to %d\n", tcp.SrcPort, tcp.DstPort)
fmt.Println("Sequence number: ", tcp.Seq)
fmt.Println()
}
// Iterate over all layers, printing out each layer type
fmt.Println("All packet layers:")
for _, layer := range packet.Layers() {
fmt.Println("- ", layer.LayerType())
}
// When iterating through packet.Layers() above,
// if it lists Payload layer then that is the same as
// this applicationLayer. applicationLayer contains the payload
applicationLayer := packet.ApplicationLayer()
if applicationLayer != nil {
fmt.Println("Application layer/Payload found.")
fmt.Printf("%s\n", applicationLayer.Payload())
// Search for a string inside the payload
if strings.Contains(string(applicationLayer.Payload()), "HTTP") {
fmt.Println("HTTP found!")
}
}
// Check for errors
if err := packet.ErrorLayer(); err != nil {
fmt.Println("Error decoding some part of the packet:", err)
}
}
创建和发送packet #
下面这个例子做了几个事情。首先,它将演示如何使用网络设备发送原始字节。这样,您就可以像串行连接(serial connection
)一样使用它来发送数据。这对于真正的低层的数据传输很有用,但是如果你想与一个应用程序交互,你可能想建立硬件和软件都能识别的包。
接下来,它将演示如何使用ethernet、IP和TCP层创建数据包。所有的东西都是默认的和空的,所以它实际上不做任何事情。
为了完成它,我们创建了另一个数据包,但实际上为ethernet层填充了一些MAC地址,为IPv4填充了一些IP地址,为TCP层填充了一些端口号。您应该看到如何用它伪造数据包和模拟设备。
TCP层结构具有可读取或设置的SYN, FIN, and ACK 布尔标志。这有利于控制和模糊TCP握手、会话和端口扫描。
pcap库提供了一个发送字节的简单方法,但是gopacket中的layers包帮助我们为各个层创建字节结构
package main
import (
"github.com/google/gopacket"
"github.com/google/gopacket/layers"
"github.com/google/gopacket/pcap"
"log"
"net"
"time"
)
var (
device string = "eth0"
snapshot_len int32 = 1024
promiscuous bool = false
err error
timeout time.Duration = 30 * time.Second
handle *pcap.Handle
buffer gopacket.SerializeBuffer
options gopacket.SerializeOptions
)
func main() {
devices, _ := pcap.FindAllDevs()
handle, err = pcap.OpenLive(devices[0].Name, snapshot_len, promiscuous, timeout)
if err != nil {log.Fatal(err) }
defer handle.Close()
// Send raw bytes over wire
rawBytes := []byte{10, 20, 30}
err = handle.WritePacketData(rawBytes)
if err != nil {
log.Fatal(err)
}
// Create a properly formed packet, just with
// empty details. Should fill out MAC addresses,
// IP addresses, etc.
buffer = gopacket.NewSerializeBuffer()
_ = gopacket.SerializeLayers(buffer, options,
&layers.Ethernet{},
&layers.IPv4{},
&layers.TCP{},
gopacket.Payload(rawBytes),
)
outgoingPacket := buffer.Bytes()
// Send our packet
err = handle.WritePacketData(outgoingPacket)
if err != nil {
log.Fatal(err)
}
// This time lets fill out some information
ipLayer := &layers.IPv4{
SrcIP: net.IP{127, 0, 0, 1},
DstIP: net.IP{8, 8, 8, 8},
}
ethernetLayer := &layers.Ethernet{
SrcMAC: net.HardwareAddr{0xFF, 0xAA, 0xFA, 0xAA, 0xFF, 0xAA},
DstMAC: net.HardwareAddr{0xBD, 0xBD, 0xBD, 0xBD, 0xBD, 0xBD},
}
tcpLayer := &layers.TCP{
SrcPort: layers.TCPPort(4321),
DstPort: layers.TCPPort(80),
}
// And create the packet with the layers
buffer = gopacket.NewSerializeBuffer()
_ = gopacket.SerializeLayers(buffer, options,
ethernetLayer,
ipLayer,
tcpLayer,
gopacket.Payload(rawBytes),
)
outgoingPacket = buffer.Bytes()
}
更多创建和解码packet的例子 #
package main
import (
"fmt"
"github.com/google/gopacket"
"github.com/google/gopacket/layers"
)
func main() {
// If we don't have a handle to a device or a file, but we have a bunch
// of raw bytes, we can try to decode them in to packet information
// NewPacket() takes the raw bytes that make up the packet as the first parameter
// The second parameter is the lowest level layer you want to decode. It will
// decode that layer and all layers on top of it. The third layer
// is the type of decoding: default(all at once), lazy(on demand), and NoCopy
// which will not create a copy of the buffer
// Create an packet with ethernet, IP, TCP, and payload layers
// We are creating one we know will be decoded properly but
// your byte source could be anything. If any of the packets
// come back as nil, that means it could not decode it in to
// the proper layer (malformed or incorrect packet type)
payload := []byte{2, 4, 6,7,9,9}
options := gopacket.SerializeOptions{}
buffer := gopacket.NewSerializeBuffer()
gopacket.SerializeLayers(buffer, options,
&layers.Ethernet{},
&layers.IPv4{},
&layers.TCP{},
gopacket.Payload(payload),
)
rawBytes := buffer.Bytes()
// Decode an ethernet packet
ethPacket :=
gopacket.NewPacket(
rawBytes,
layers.LayerTypeEthernet,
gopacket.Default,
)
// with Lazy decoding it will only decode what it needs when it needs it
// This is not concurrency safe. If using concurrency, use default
ipPacket :=
gopacket.NewPacket(
rawBytes,
layers.LayerTypeIPv4,
gopacket.Lazy,
)
// With the NoCopy option, the underlying slices are referenced
// directly and not copied. If the underlying bytes change so will
// the packet
tcpPacket :=
gopacket.NewPacket(
rawBytes,
layers.LayerTypeTCP,
gopacket.NoCopy,
)
fmt.Println(ethPacket)
fmt.Println(ipPacket)
fmt.Println(tcpPacket)
}
定制层 #
下一个程序将演示如何创建您自己的层。这有助于实现当前不包含在gopacket layers包中的协议。如果您想创建自己的l33t
协议,甚至不使用TCP/IP或ethernet,那么它也很有用
package main
import (
"fmt"
"github.com/google/gopacket"
)
// Create custom layer structure
type CustomLayer struct {
// This layer just has two bytes at the front
SomeByte byte
AnotherByte byte
restOfData []byte
}
// Register the layer type so we can use it
// The first argument is an ID. Use negative
// or 2000+ for custom layers. It must be unique
var CustomLayerType = gopacket.RegisterLayerType(
2001,
gopacket.LayerTypeMetadata{
"CustomLayerType",
gopacket.DecodeFunc(decodeCustomLayer),
},
)
// When we inquire about the type, what type of layer should
// we say it is? We want it to return our custom layer type
func (l CustomLayer) LayerType() gopacket.LayerType {
return CustomLayerType
}
// LayerContents returns the information that our layer
// provides. In this case it is a header layer so
// we return the header information
func (l CustomLayer) LayerContents() []byte {
return []byte{l.SomeByte, l.AnotherByte}
}
// LayerPayload returns the subsequent layer built
// on top of our layer or raw payload
func (l CustomLayer) LayerPayload() []byte {
return l.restOfData
}
// Custom decode function. We can name it whatever we want
// but it should have the same arguments and return value
// When the layer is registered we tell it to use this decode function
func decodeCustomLayer(data []byte, p gopacket.PacketBuilder) error {
// AddLayer appends to the list of layers that the packet has
p.AddLayer(&CustomLayer{data[0], data[1], data[2:]})
// The return value tells the packet what layer to expect
// with the rest of the data. It could be another header layer,
// nothing, or a payload layer.
// nil means this is the last layer. No more decoding
// return nil
// Returning another layer type tells it to decode
// the next layer with that layer's decoder function
// return p.NextDecoder(layers.LayerTypeEthernet)
// Returning payload type means the rest of the data
// is raw payload. It will set the application layer
// contents with the payload
return p.NextDecoder(gopacket.LayerTypePayload)
}
func main() {
// If you create your own encoding and decoding you can essentially
// create your own protocol or implement a protocol that is not
// already defined in the layers package. In our example we are just
// wrapping a normal ethernet packet with our own layer.
// Creating your own protocol is good if you want to create
// some obfuscated binary data type that was difficult for others
// to decode
// Finally, decode your packets:
rawBytes := []byte{0xF0, 0x0F, 65, 65, 66, 67, 68}
packet := gopacket.NewPacket(
rawBytes,
CustomLayerType,
gopacket.Default,
)
fmt.Println("Created packet out of raw bytes.")
fmt.Println(packet)
// Decode the packet as our custom layer
customLayer := packet.Layer(CustomLayerType)
if customLayer != nil {
fmt.Println("Packet was successfully decoded with custom layer decoder.")
customLayerContent, _ := customLayer.(*CustomLayer)
// Now we can access the elements of the custom struct
fmt.Println("Payload: ", customLayerContent.LayerPayload())
fmt.Println("SomeByte element:", customLayerContent.SomeByte)
fmt.Println("AnotherByte element:", customLayerContent.AnotherByte)
}
}
更快的解码packet #
如果我们知道需要什么层,我们可以使用已有的结构来存储packet信息,而不是为每个packet创建新的结构,既浪费内存又浪费时间。使用DecodingLayerParser
可以更快一点。这就像marshalling/unmarshalling数据一样
package main
import (
"fmt"
"github.com/google/gopacket"
"github.com/google/gopacket/layers"
"github.com/google/gopacket/pcap"
"log"
"time"
)
var (
device string = "eth0"
snapshot_len int32 = 1024
promiscuous bool = false
err error
timeout time.Duration = 30 * time.Second
handle *pcap.Handle
// Will reuse these for each packet
ethLayer layers.Ethernet
ipLayer layers.IPv4
tcpLayer layers.TCP
)
func main() {
// Open device
handle, err = pcap.OpenLive(device, snapshot_len, promiscuous, timeout)
if err != nil {
log.Fatal(err)
}
defer handle.Close()
packetSource := gopacket.NewPacketSource(handle, handle.LinkType())
for packet := range packetSource.Packets() {
parser := gopacket.NewDecodingLayerParser(
layers.LayerTypeEthernet,
ðLayer,
&ipLayer,
&tcpLayer,
)
foundLayerTypes := []gopacket.LayerType{}
err := parser.DecodeLayers(packet.Data(), &foundLayerTypes)
if err != nil {
fmt.Println("Trouble decoding layers: ", err)
}
for _, layerType := range foundLayerTypes {
if layerType == layers.LayerTypeIPv4 {
fmt.Println("IPv4: ", ipLayer.SrcIP, "->", ipLayer.DstIP)
}
if layerType == layers.LayerTypeTCP {
fmt.Println("TCP Port: ", tcpLayer.SrcPort, "->", tcpLayer.DstPort)
fmt.Println("TCP SYN:", tcpLayer.SYN, " | ACK:", tcpLayer.ACK)
}
}
}
}
参考 #
https://pkg.go.dev/github.com/google/gopacket
https://blog.csdn.net/weixin_49393427/article/details/112362561